سامرا ابراهیمیان، داوود ایرانشاها، الهام مبرک، "یک تکنیک نوی برای افزایش حرارتی نفت با کامپرسور" گاز، جلد 146، شماره 1، صفحه 1-12، فوریه 2020، CHEMICAL ENGINEERING AND PROCESSING-Process Intensification.

سامرا ابراهیمیان، داوود ایرانشاها، "مقایسه کلیدی بین مکانی‌های جایگزین در اتصال حرارتی نفت با کامپرسور" گاز، جلد 112، شماره 0، صفحه 1-17، فوریه 2020، INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER.

سامرا ابراهیمیان، داوود ایرانشاها، "مدل‌سازی و بهینه‌سازی ترکیبات اتصال حرارتی نفت و کامپرسور با جریان آبیاری مختلف" گاز، جلد 129، شماره 1، صفحه 315-335، فوریه 2020، Reaction Kinetics, Mechanisms and Catalysis.

الی جلالی، مجتبی شفیعی، داوود ایرانشاها، امیر حسن موحومدی، "سیماتیک و بهینه‌سازی انرژی یک واحد تثبیت‌گر حلال در یک پتروشیمی" گاز، جلد 42، شماره 1، صفحه 104-112، نوامبر 2019، ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS.

مهدی شکری کوپای، داوود ایرانشاها، عباس نادری، "بهینه‌سازی یک ترکیب مئیل‌خیابی حلال تحت مایع و کامپرسور" گاز، جلد 44، شماره 39، صفحه 21882-21895، ژوئیه 2019، INTERNATIONAL JOURNAL OF HYDROGEN ENERGY.

روزبه غانی، فاطمه بوسنتی، داوود ایرانشاها، "تحقیق در پیشگیری از ترکیب ترکیه‌ای غیر رایج و دکترای ده‌گزین و تثبیت‌گر حلال با یک ترکیب دوگانه" گاز، جلد 33، شماره 7، صفحه 6717-6726، ژوئیه 2019، ENERGY & FUELS.

1. Roozbeh Ghani, Davood Iranshahi, "Simulation of hydrogen cycle in hydrogenation and dehydrogenation reactors", The 16th Iranian National Congress of Chemical Engineering, January 2019

2. Samira Ebrahimian, Davood Iranshahi, "Optimization of propane ammoxidation in a tubular reactor to enhance acrylonitrile production", The 16th Iranian National Congress of Chemical Engineering, January 2019

4. Samira Ebrahimian, Davood Iranshahi, "Multi objective optimization of propane ammoxidation reactor to boost acrylonitrile and acetonitril", The 16th Iranian National Congress of Chemical Engineering, January 2019

5. Amirhossein Khazayi Aliabad, Davood Iranshahi, Samad Rahmani Koragah, "Modeling of an Industrial reformer for Glycerol Steam Reforming to produce Hydrogen", The 16th Iranian National Congress of Chemical Engineering, January 2019

7. Mahdi Shakeri Kupaie, Davood Iranshahi, Abass Naderifar, "Mathematical modeling and simulation of naphtha catalytic reactors", The 16th Iranian National Congress of Chemical Engineering, January 2019

10. Samad Rahmani Koragah, Davood Iranshahi, Amirhossein Khazayi Aliabad, "Design and modeling of palladium-silver membrane reactor of isobutane dehydrogenation reaction in order to increase the production of isobutene and hydrogen", The 16th Iranian National Congress of Chemical Engineering, January 2019

15 Davood Iranshahi, Mohammad Ghane Ezabadi, Mohammad Javad Vismeh, Mohammad Hossein Noori Shamsi, Hassan Kheiri, "Detection of heavy metals in treatment plant effluent wastewater of Industrial Town and reduction of their concentration with zeolite adsorbents ", 1st National Conference on Gas and Petrochemical Processes, May 2017

17 Kolsoom Azizi, Davood Iranshahi, "CFD simulation of Fluidized Naphtha Reforming Reactors ", the 9th international chemical engineering congress and exhibition, December 2015

19 Davood Iranshahi, Farnaz Rezvani, "Economic feasibility of producing hydrogen from the methane and methanol reforming by microreactors ", the International conference in new research of Chemistry and Chemical Engineering, September 2015

20 Davood Iranshahi, Farnaz Rezvani, "CFD modeling of fluid flow thorough the channels ", the International conference in new research of Chemistry and Chemical Engineering, September 2015

<table>
<thead>
<tr>
<th>#</th>
<th>عنوان درس</th>
<th>توصيف درس</th>
<th>دوره سرفصل</th>
<th>دATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Heat Transfer</td>
<td>This course introduces students with heat transfer fundamentals.</td>
<td>Spring</td>
<td>2020</td>
</tr>
<tr>
<td>2</td>
<td>OPTIMIZATION</td>
<td>This course is planned to teach students how to use optimization algorithms to improve the design and operation of chemical processes</td>
<td>Spring</td>
<td>2020</td>
</tr>
<tr>
<td>3</td>
<td>Special Topics (Heat Transfer Equipment Design)</td>
<td>This course will introduce students with applications and design of heat transfer equipment.</td>
<td>Fall</td>
<td>2019</td>
</tr>
<tr>
<td>4</td>
<td>Special Topics (Chemical Reaction Engineering)</td>
<td>This course will introduce students with kinetics of chemical reactions and design of chemical reactors.</td>
<td>Fall</td>
<td>2019</td>
</tr>
<tr>
<td>5</td>
<td>Advanced Kinetics & Reactor Design</td>
<td>This course will introduce students with advanced issues of chemical reactors.</td>
<td>Fall</td>
<td>2019</td>
</tr>
<tr>
<td>6</td>
<td>Industrial & Specific Reactors</td>
<td>This course will introduce students with industrial and special chemical reactors.</td>
<td>Fall</td>
<td>2019</td>
</tr>
<tr>
<td>7</td>
<td>Heat Transfer</td>
<td>This course introduces students with heat transfer fundamentals.</td>
<td>Spring</td>
<td>2019</td>
</tr>
<tr>
<td>8</td>
<td>OPTIMIZATION</td>
<td>This course is planned to teach students how to use optimization algorithms to improve the design and operation of chemical processes</td>
<td>Spring</td>
<td>2019</td>
</tr>
<tr>
<td>Course Number</td>
<td>Course Title</td>
<td>Description</td>
<td>Semester</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Kinetics & Reactor Design</td>
<td>This course will introduce students with kinetics of chemical reactions and design of chemical reactors.</td>
<td>Spring 2019</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Industrial & Specific Reactors</td>
<td>This course will introduce students with industrial and special chemical reactors.</td>
<td>Fall 2018</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Advanced Kinetics & Reactor Design</td>
<td>This course will introduce students with advanced issues of chemical reactors.</td>
<td>Fall 2018</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Heat Transfer (II)</td>
<td>This course will introduce students with applications of heat transfer in area of chemical engineering.</td>
<td>Fall 2018</td>
<td></td>
</tr>
</tbody>
</table>